INDUCED CONNECTIONS ON TOTAL SPACES
OF FIBER BUNDLES

IvaAN KOLAR

ABSTRACT. We present a construction transforming a general con-
nection I' on a fibered manifold Y — M and a classical connection
A on its base M into a classical connection on the total space Y
by means of a vertical parallelism ® and an auxiliary linear con-
nection A. The relations to the theory of gauge-natural operators
are discussed.

An important problem in the gauge theories of mathematical physics
is how a principal connection I' on a principal bundle P — M and a
classical connection A on its base M induce a connection on the r-
th principal gauge prolongation W"P of P, [1]. In [3], the authors
determine all gauge-natural operators of this type. In [3] and [4], it
is clarified that this result is essentially based on an exponential map
on P defined by I' and A. In [4] we deduced that this exponential
map arises from a classical connection on the total space P that is
constructed from I" and A.

In the present paper, we analyze how a general connection I' on an
arbitrary fibered manifold Y — M and a classical connection A on M
induce a classical connection on the total space Y. We clarify that one
can use a vertical parallelism ®: Y x,; E — VY, where £ — M is
an auxiliary vector bundle and VY is the vertical tangent bundle of
Y, and a linear connection A on £ — M. We write (I, A, &, A) for
the resulting classical connection on Y. Our construction covers two
important special cases. The first one is the above-mentioned case of a
principal connection, the second one concerns a linear connection on an
arbitrary vector bundle. Both cases were discussed from the viewpoint
of the theory of gauge-natural operators in [5].

In various problems concerning prolongation of connections, we re-
alized that the torsion of the resulting connection involves important
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information about the original objects, [5]. So we characterize com-
pletely the case (I', A, ®, A) is torsion-free. In particular, we introduce
the general concept of the covariant differential of a base-preserving
morphism of fibered manifolds, that is based on our general theory of
Lie differentation, [5]. As a special case, we obtain the concept of co-
variant differential Dp o)® of ® with respect to I' and A. The main
result is formulated in Proposition 6.

All manifolds and maps are assumed to be infinitely differentiable.
Unless otherwise specified, we use the terminology and notation from
the book [5].

1. The connection (I', A, ®, A). Let p: Y — M be a fibered manifold
and g: £ — M be a vector bundle, dimY = dim F.

Definition 1. A vertical parallelism on Y is a fibered morphism ®:
Y Xy E — VY over idy such that each restriction @,: FEy,) — V,Y
is a linear isomorphism of vector spaces. If £ = M x W is the product
bundle, then & is said to be of product type.

So every section s: M — E defines a vertical vector field ¢(s): Y —
VY. In the product case, ® can be interpreted asamap Y xW — VY
and every w € W determines a vertical vector field p(w) on Y.

If 2°, 4P are fiber coordinates on Y, ¢, wP are fiber coordinates on E
linear on the fibers and n? = dy? are the induced coordinates on VY,
then the coordinate expression of ® is

(1) W = al(a, g’

We write af for the inverse matrix to af.

A general connection I' on Y can be considered either as a section
Y — JYY or as a lifting map Y Xy TM — TY, [5]. In both cases, the
coordinate expression of I' is

(2) dy? = F? () da'
The equations of a linear connection A on E are
(3) dw? = AV (z)w? dz’ .

By a classical connection A on M we mean a linear connection on T'M.
Its coordinate expression is

(4) dg' = Ny (2)& da®, & =da’.
Then the differential equations of the geodesics of A are
d*z’ . dad dx®

5 e et
(5) dt? kAt dt
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We construct the induced classical connection ¥ = (I'; A, ®, A) on Y
as a section U: TY — JYTY — Y). We decompose Z € T,Y into the
horizontal part hZ = I'(y, Zy), Zo € T, M, x = p(y) and the vertical
part vZ = ®(y,Z,), Z; € E,. We take a vector field X on M such
that j1X = A(Zy) and construct its T-lift TX: Y — TY. Further, we
consider a section s of E such that jls = A(Z;).

Definition 2. For every Z € T,Y, we define
U(Z) =j, (X + ¢(s)) -

Proposition 1. The coordinate expression of ¥ is (4) and

8Fip k i j anp )
dnP = <% + F,fAij>f dr? + a—yqf dy*
6 8a§f o i i aa};~s r r el
(6) +%aq(ﬂq—ﬂqf)d9€]+a—yq@r(n - ) dy'
+ Al Ay (! — FYE) da

Proof. Let & = X'(x) or w? = sP(z) be the coordinate expression of X
or s, respectively. Hence

oz'(x) 0sP ()
Oz’ oz’
Then the coordinate expression of T'X + ¢(s) is £ = X*(z) and
1 = Ff (2,y) X" (2) + di(2,y)s() .
Differentiating this relation, we obtain (6). O

= Ay ()X (@),

= A (@)s(x).

By (4) and (6), (I, A,®,A) is a classical connection on Y that is
projectable over the classical connection A on M.

In the case of vertical parallelism of product type, one usually con-
siders the trivial connection on M x W with A?; = 0. Then we write
U= (I',A,®), cf. [4].

The following lemma generalizes Lemma 3 from [4].

Lemma 1. Every I'-lift (mi(t),yp(t)) of a geodesic x'(t) of A is a geo-
desic of (' A, ®, A) for arbitrary ® and A.
Proof. The I'-lift satisfies

dyP dx’

—— = FP(x(t t .
) W B, 0) 2
Differentiating (7) and using z°(¢) is a geodesic of A, we obtain

d*yP OF? drt do?  OFF dx' dy?
= ‘ FPA’?.) D Tl i

(®) dt? (8xﬂ TN ) T Oy dt dt
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ut (7) and (8) annihilates the equations of geodesics corresponding
to (4) and (6) for every ® and A. O

2. Two important special cases. On every principal bundle P(M, G)
we have a canonical vertical parallelism of product typeIl: Pxg — VP
defined by the fundamental vector fields. For a principal connection
[ on P, we denoted (I',A,II) = N(I', A) in [4]. (This connection was
also studied in [5] from the viewpoint of gauge-naturality.) In [4], we
described all geodesics of N(I',A) as follows: If z(¢) is a T-lift of a
geodesic z(t) of A and g(t) is a one-parameter subgroup of G, then
z(t) g(t) is also a geodesic of N(I',A). (In [4] we assumed that A is
torsion-free, but one verifies easily that the proof remains unchanged
for arbitrary A.)

On every vector bundle £ — M, we have a canonical vertical paral-
lelism V determined by the well-known relation VE = E x, E. In [2],
see also [5, p.410], J. Gancarzewicz constructed a classical connection
H(I',A) on the total space E from a linear connection I' on F — M
and a classical connection A on M by prescribing certain conditions on
the absolute differentiation with respect to H(I', A). According to [5],
if
(9) dy? = 7, (a)y" do’

is the coordinate expression of I', then the equations of H(I', A) are (4)
and
P

(10) dif” = (‘ZI; + TP AN — rgzjrg) Y&t da + TP,(¢F dy? + 7 da) .
On the other hand, our construction yields a connection (I'; A, V, T').

Proposition 2. We have H(I',A) = (I', A, V,T).

Proof. Substituting I = I'V;y?, Ay, = T, and a? = 67 into (6), we

obtain (10). O

It is interesting that we can determine all geodesics even in the case
of H(I', A). First we deduce

Proposition 3. If (2'(t),27(t)) is a I'-lift of a geodesic z'(t) of A and
(2'(t),y?(t)) is an arbitrary geodesic of H(T',A), then (2(t),y"(t) +
t2P(t)) is also a geodesic of H(T', A).

Proof. We have




Differentiating this relation and using (5), we obtain

d?zP ory dx® dx’ dz9 dz

— = +TI? Ak ) 1— — 4+ TP — .

dt? (axa o) F g T e a
Since (z'(t),y?(t)) is a geodesic, it satisfies

d*yP or? daci dx? dy? dx’

11 = (F2 + T Al — Ty, )y S T S
e T W T A L T TR T
Then one verifies directly that y? + tz? satisfies (11) as well. O

Consider an arbitrary tangent vector (£%,n?) of E at (z',y?). Take
the geodesic z%(t) of A in the direction & and comstruct its T-lift
(2'(t),yP(t)) through (z',y?). We look for a I-lift (z%(t),2"(t)) such
that the tangent vector of yP(t) + tzP(t) at 0 is n?. This means %" +
2P(0) = nP. But dy;f ) — [P y7€", so that our relation determines 27(0).

3. The vertical torsion. We recall that an absolute parallelism on
a manifold N, dim N = n, is a map S: N x R® — TN such that
each restriction S(y,—): R® — T,N is a linear isomorphism, [6]. Its
coordinate expression is 7” = a?(y)w?. The vector fields S(—,w): N —
TN, w € R"™ are called constant vector fields of S. Fixing the canonical
basis of R”, we can interpret S as a section o: N — P'N of the first
order frame bundle of N. Then o(N) is a reduction of P*N to the
unit subgroup {e}. We have j'o: N — J'P!N, that can be viewed as
a map of o(N) into J'P'N. Using right translations, we extend j'o
into a principal connection ¥ on P'N that is equivalent to a classical
connection on N, [5]. Direct evaluation yields that the Christoffel’s of
) are
da?

(12) Y i
The torsion 75 of S is defined to be the torsion of . A classical
assertion (that can be easily verified by direct evaluation) reads that
S is torsion-free, iff the bracket of every two constant vector fields
vanishes.

Hence a vertical parallelism ® on Y can be viewed as a system of
absolute parallelisms ®, on the individual fibers Y, x € M.

Definition 3. The map
7d = U ®,: Y - VY @ A2VY

zeM
is called the torsion of vertical parallelism ®.

For U = (I', A, ®,A), (4), (6) and (12) imply directly
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Proposition 4. The torsion TV of W is restrictible to the fibers and
the restricted map Y — VY @ A2V*Y concides with 7®.

By (12), the coordinate form of 7® = 0 is

daf _,  0Oab _,

(13) oy a; = Dy a .
4. Vanishing of the torsion of (I', A, ®, A). We characterize van-
ishing of the torsion 7V of ¥ gradually. We write W7, W7 Wi, WP for
the corresponding Christoffel’s of W.

First we recall the general concept of Lie derivative of an arbitrary
map f: M — N with respect to a pair of vector fields &: M — TM
and n: N — T'N, [5]. This is the map

Lepf =Tfol—nof: M —-TN.

If we consider a section s: M — Y, its covariant differential Drs: M —
VY ® T* M with respect to I' satisfies

(Drs)(§) = Zereys forevery &M —TM,

[5]. If we have another fibered manifold Z — M with general connec-
tion  of the form dz® = G¢(x, z) do* and a base-preserving morphism
Y = Z, 2% = f%x,y), then the covariant differential Drof: Y —
VZ @ T*M is defined by

(Draf)(€) = Lreog f -

Hence its coordinate expression is

8fa afa FP—G?(?L’,f(xay))

ox? + oyr *

Consider ®: Y x ) E — VY. According to [5, p.255], I induces a
connection VI" on VY — M with the coordinate expression (2) and

_oF
= oy
Further, we construct the product connection I' x A on Y x,; E. Then
Druayr®: Y xp E— VVY. The values lie in a subbundle character-
ized by V7 = 0, where m: VY — Y is the bundle projection, so that

Va: VVY — VY. This subbundle coincides with VY xy VY.

Definition 4. The covariant differential D A)®: Y Xy B — VY is
the second component of Dpya yr®.

(14)

(15) dn? nldz" .

According to (14) and (15), its coordinate expression is

dal  OaP OFP
q _4a T PAT _ v T q
(16) ( Gt gyt EL A = ap) .



By (6), the condition W}, = W} reads

dak OF?  Oa?
T PAT 75 t_ S as
(17) o 0 + ap Al ay = ogr Oy a,F; .

Then (13) and (16) imply the following assertion.

Proposition 5. If 7® = 0, then U}, = U} is equivalent to D)@ =
0.

Further, if 7A = 0 and 7® = 0 and D a)® = 0, where 7A is the
torsion of A, then W}, = W is equivalent to

OF; + OF F! = oLy + _8F]P F!.

oxri — oy 7 Ozt Oyr '

We recall that the curvature of I is a map CT: Y — VY @ A2T*M
and (18) is the coordinate form of the relation CT' = 0, [5]. Thus we

have deduced the following assertion.

Proposition 6. The torsion of (I'; A, ®,A) vanishes iff TA = 0 and
7® =0 and Dy ay® =0 and CT = 0.

(18)
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