INDUCED CONNECTIONS ON TOTAL SPACES OF FIBER BUNDLES

IVAN KOLÁŘ

ABSTRACT. We present a construction transforming a general connection Γ on a fibered manifold $Y \to M$ and a classical connection Λ on its base M into a classical connection on the total space Y by means of a vertical parallelism Φ and an auxiliary linear connection Δ . The relations to the theory of gauge-natural operators are discussed.

An important problem in the gauge theories of mathematical physics is how a principal connection Γ on a principal bundle $P \to M$ and a classical connection Λ on its base M induce a connection on the r-th principal gauge prolongation W^rP of P, [1]. In [3], the authors determine all gauge-natural operators of this type. In [3] and [4], it is clarified that this result is essentially based on an exponential map on P defined by Γ and Λ . In [4] we deduced that this exponential map arises from a classical connection on the total space P that is constructed from Γ and Λ .

In the present paper, we analyze how a general connection Γ on an arbitrary fibered manifold $Y \to M$ and a classical connection Λ on M induce a classical connection on the total space Y. We clarify that one can use a vertical parallelism $\Phi \colon Y \times_M E \to VY$, where $E \to M$ is an auxiliary vector bundle and VY is the vertical tangent bundle of Y, and a linear connection Δ on $E \to M$. We write $(\Gamma, \Lambda, \Phi, \Delta)$ for the resulting classical connection on Y. Our construction covers two important special cases. The first one is the above-mentioned case of a principal connection, the second one concerns a linear connection on an arbitrary vector bundle. Both cases were discussed from the viewpoint of the theory of gauge-natural operators in [5].

In various problems concerning prolongation of connections, we realized that the torsion of the resulting connection involves important

²⁰⁰⁰ Mathematics Subject Classification: 53C05, 58A32.

Key words and phrases: connection, vertical parallelism, geodesic, torsion, covariant differential.

This research was supported by the Ministry of Education of Czech Republic under the project MSM 0021622409 and by GACR under the grant 201/09/0981.

information about the original objects, [5]. So we characterize completely the case $(\Gamma, \Lambda, \Phi, \Delta)$ is torsion-free. In particular, we introduce the general concept of the covariant differential of a base-preserving morphism of fibered manifolds, that is based on our general theory of Lie differentiation, [5]. As a special case, we obtain the concept of covariant differential $D_{(\Gamma,\Delta)}\Phi$ of Φ with respect to Γ and Δ . The main result is formulated in Proposition 6.

All manifolds and maps are assumed to be infinitely differentiable. Unless otherwise specified, we use the terminology and notation from the book [5].

1. The connection $(\Gamma, \Lambda, \Phi, \Delta)$. Let $p: Y \to M$ be a fibered manifold and $q: E \to M$ be a vector bundle, dim $Y = \dim E$.

Definition 1. A vertical parallelism on Y is a fibered morphism Φ : $Y \times_M E \to VY$ over id_Y such that each restriction $\Phi_y \colon E_{q(y)} \to V_y Y$ is a linear isomorphism of vector spaces. If $E = M \times W$ is the product bundle, then Φ is said to be of product type.

So every section $s: M \to E$ defines a vertical vector field $\varphi(s): Y \to VY$. In the product case, Φ can be interpreted as a map $Y \times W \to VY$ and every $w \in W$ determines a vertical vector field $\varphi(w)$ on Y.

If x^i , y^p are fiber coordinates on Y, x^i , w^p are fiber coordinates on E linear on the fibers and $\eta^p = dy^p$ are the induced coordinates on VY, then the coordinate expression of Φ is

(1)
$$\eta^p = a_q^p(x, y) w^q.$$

We write \tilde{a}_q^p for the inverse matrix to a_q^p .

A general connection Γ on Y can be considered either as a section $Y \to J^1 Y$ or as a lifting map $Y \times_M TM \to TY$, [5]. In both cases, the coordinate expression of Γ is

(2)
$$dy^p = F_i^p(x, y) dx^i.$$

The equations of a linear connection Δ on E are

(3)
$$dw^p = \Delta_{qi}^p(x)w^q dx^i.$$

By a classical connection Λ on M we mean a linear connection on TM. Its coordinate expression is

(4)
$$d\xi^i = \Lambda^i_{jk}(x)\xi^j dx^k, \qquad \xi^i = dx^i.$$

Then the differential equations of the geodesics of Λ are

(5)
$$\frac{d^2x^i}{dt^2} = \Lambda^i_{jk} \frac{dx^j}{dt} \frac{dx^k}{dt} \,.$$

We construct the induced classical connection $\Psi = (\Gamma, \Lambda, \Phi, \Delta)$ on Y as a section $\Psi \colon TY \to J^1(TY \to Y)$. We decompose $Z \in T_yY$ into the horizontal part $hZ = \Gamma(y, Z_0), Z_0 \in T_xM, x = p(y)$ and the vertical part $vZ = \Phi(y, Z_1), Z_1 \in E_x$. We take a vector field X on M such that $j_x^1X = \Lambda(Z_0)$ and construct its Γ -lift $\Gamma X \colon Y \to TY$. Further, we consider a section s of E such that $j_x^1s = \Delta(Z_1)$.

Definition 2. For every $Z \in T_yY$, we define

$$\Psi(Z) = j_y^1 (\Gamma X + \varphi(s)).$$

Proposition 1. The coordinate expression of Ψ is (4) and

$$d\eta^{p} = \left(\frac{\partial F_{i}^{p}}{\partial x^{j}} + F_{k}^{p} \Lambda_{ij}^{k}\right) \xi^{i} dx^{j} + \frac{\partial F_{i}^{p}}{\partial y^{q}} \xi^{i} dy^{q}$$

$$+ \frac{\partial a_{r}^{p}}{\partial x^{j}} \tilde{a}_{q}^{r} (\eta^{q} - F_{i}^{q} \xi^{i}) dx^{j} + \frac{\partial a_{s}^{p}}{\partial y^{q}} \tilde{a}_{r}^{s} (\eta^{r} - F_{i}^{r} \xi^{i}) dy^{q}$$

$$+ a_{r}^{p} \Delta_{si}^{r} \tilde{a}_{q}^{s} (\eta^{q} - F_{i}^{q} \xi^{i}) dx^{j}.$$

Proof. Let $\xi^i = X^i(x)$ or $w^p = s^p(x)$ be the coordinate expression of X or s, respectively. Hence

$$\frac{\partial x^{i}(x)}{\partial x^{j}} = \Lambda_{kj}^{i}(x)X^{k}(x), \quad \frac{\partial s^{p}(x)}{\partial x^{i}} = \Delta_{qi}^{p}(x)s^{q}(x).$$

Then the coordinate expression of $\Gamma X + \varphi(s)$ is $\xi^i = X^i(x)$ and

$$\eta^p = F_i^p(x, y) X^i(x) + a_g^p(x, y) s^q(x)$$
.

Differentiating this relation, we obtain (6).

By (4) and (6), $(\Gamma, \Lambda, \Phi, \Delta)$ is a classical connection on Y that is projectable over the classical connection Λ on M.

In the case of vertical parallelism of product type, one usually considers the trivial connection on $M \times W$ with $\Delta_{qi}^p = 0$. Then we write $\Psi = (\Gamma, \Lambda, \Phi)$, cf. [4].

The following lemma generalizes Lemma 3 from [4].

Lemma 1. Every Γ -lift $(x^i(t), y^p(t))$ of a geodesic $x^i(t)$ of Λ is a geodesic of $(\Gamma, \Lambda, \Phi, \Delta)$ for arbitrary Φ and Δ .

Proof. The Γ -lift satisfies

(7)
$$\frac{dy^p}{dt} = F_i^p(x(t), y(t)) \frac{dx^i}{dt}.$$

Differentiating (7) and using $x^{i}(t)$ is a geodesic of Λ , we obtain

(8)
$$\frac{d^2y^p}{dt^2} = \left(\frac{\partial F_i^p}{\partial x^j} + F_k^p \Lambda_{ij}^k\right) \frac{dx^i}{dt} \frac{dx^j}{dt} + \frac{\partial F_i^p}{\partial y^q} \frac{dx^i}{dt} \frac{dy^q}{dt}.$$

But (7) and (8) annihilates the equations of geodesics corresponding to (4) and (6) for every Φ and Δ .

2. Two important special cases. On every principal bundle P(M, G) we have a canonical vertical parallelism of product type $\Pi \colon P \times \mathfrak{g} \to VP$ defined by the fundamental vector fields. For a principal connection Γ on P, we denoted $(\Gamma, \Lambda, \Pi) = N(\Gamma, \Lambda)$ in [4]. (This connection was also studied in [5] from the viewpoint of gauge-naturality.) In [4], we described all geodesics of $N(\Gamma, \Lambda)$ as follows: If z(t) is a Γ -lift of a geodesic x(t) of Λ and g(t) is a one-parameter subgroup of G, then z(t) g(t) is also a geodesic of $N(\Gamma, \Lambda)$. (In [4] we assumed that Λ is torsion-free, but one verifies easily that the proof remains unchanged for arbitrary Λ .)

On every vector bundle $E \to M$, we have a canonical vertical parallelism \mathcal{V} determined by the well-known relation $VE = E \times_M E$. In [2], see also [5, p.410], J. Gancarzewicz constructed a classical connection $H(\Gamma, \Lambda)$ on the total space E from a linear connection Γ on $E \to M$ and a classical connection Λ on M by prescribing certain conditions on the absolute differentiation with respect to $H(\Gamma, \Lambda)$. According to [5], if

(9)
$$dy^p = \Gamma^p_{qi}(x)y^q dx^i$$

is the coordinate expression of Γ , then the equations of $H(\Gamma, \Lambda)$ are (4) and

$$(10) d\eta^p = \left(\frac{\partial \Gamma^p_{qi}}{\partial x^j} + \Gamma^p_{qk} \Lambda^k_{ij} - \Gamma^p_{rj} \Gamma^r_{qi}\right) y^q \xi^i dx^j + \Gamma^p_{qi} (\xi^i dy^q + \eta^q dx^i).$$

On the other hand, our construction yields a connection $(\Gamma, \Lambda, \mathcal{V}, \Gamma)$.

Proposition 2. We have $H(\Gamma, \Lambda) = (\Gamma, \Lambda, \mathcal{V}, \Gamma)$.

Proof. Substituting
$$F_i^p = \Gamma_{qi}^p y^q$$
, $\Delta_{qi}^p = \Gamma_{qi}^p$ and $a_q^p = \delta_q^p$ into (6), we obtain (10).

It is interesting that we can determine all geodesics even in the case of $H(\Gamma, \Lambda)$. First we deduce

Proposition 3. If $(x^i(t), z^p(t))$ is a Γ -lift of a geodesic $x^i(t)$ of Λ and $(x^i(t), y^p(t))$ is an arbitrary geodesic of $H(\Gamma, \Lambda)$, then $(x^i(t), y^p(t) + tz^p(t))$ is also a geodesic of $H(\Gamma, \Lambda)$.

Proof. We have

$$\frac{dz^p}{dt} = \Gamma^p_{qi}(x(t)) z^q \frac{dx^i}{dt}.$$

Differentiating this relation and using (5), we obtain

$$\frac{d^2z^p}{dt^2} = \left(\frac{\partial \Gamma^p_{qi}}{\partial x^j} + \Gamma^p_{qk}\Lambda^k_{ij}\right)z^q\frac{dx^i}{dt}\frac{dx^j}{dt} + \Gamma^p_{qi}\frac{dz^q}{dt}\frac{dx^i}{dt} \,.$$

Since $(x^i(t), y^p(t))$ is a geodesic, it satisfies

$$(11) \qquad \frac{d^2y^p}{dt^2} = \left(\frac{\partial\Gamma^p_{qi}}{\partial x^j} + \Gamma^p_{qk}\Lambda^k_{ij} - \Gamma^p_{rj}\Gamma^r_{qi}\right)y^q\frac{dx^i}{dt}\frac{dx^j}{dt} + 2\Gamma^p_{qi}\frac{dy^q}{dt}\frac{dx^i}{dt}.$$

Then one verifies directly that $y^p + tz^p$ satisfies (11) as well.

Consider an arbitrary tangent vector (ξ^i, η^p) of E at (x^i, y^p) . Take the geodesic $x^i(t)$ of Λ in the direction ξ^i and construct its Γ -lift $(x^i(t), y^p(t))$ through (x^i, y^p) . We look for a Γ -lift $(x^i(t), z^p(t))$ such that the tangent vector of $y^p(t) + tz^p(t)$ at 0 is η^p . This means $\frac{dy^p}{dt} + z^p(0) = \eta^p$. But $\frac{dy^p(0)}{dt} = \Gamma^p_{qi} y^q \xi^i$, so that our relation determines $z^p(0)$.

3. The vertical torsion. We recall that an absolute parallelism on a manifold N, dim N=n, is a map $S\colon N\times\mathbb{R}^n\to TN$ such that each restriction $S(y,-)\colon\mathbb{R}^n\to T_yN$ is a linear isomorphism, [6]. Its coordinate expression is $\eta^p=a_q^p(y)w^q$. The vector fields $S(-,w)\colon N\to TN, w\in\mathbb{R}^n$ are called constant vector fields of S. Fixing the canonical basis of \mathbb{R}^n , we can interpret S as a section $\sigma\colon N\to P^1N$ of the first order frame bundle of N. Then $\sigma(N)$ is a reduction of P^1N to the unit subgroup $\{e\}$. We have $j^1\sigma\colon N\to J^1P^1N$, that can be viewed as a map of $\sigma(N)$ into J^1P^1N . Using right translations, we extend $j^1\sigma$ into a principal connection Σ on P^1N that is equivalent to a classical connection on N, [5]. Direct evaluation yields that the Christoffel's of Σ are

(12)
$$\Gamma_{qr}^p = \frac{\partial a_s^p}{\partial u^r} \tilde{a}_q^s.$$

The torsion τS of S is defined to be the torsion of Σ . A classical assertion (that can be easily verified by direct evaluation) reads that S is torsion-free, iff the bracket of every two constant vector fields vanishes.

Hence a vertical parallelism Φ on Y can be viewed as a system of absolute parallelisms Φ_x on the individual fibers Y_x , $x \in M$.

Definition 3. The map

$$\tau \Phi = \bigcup_{x \in M} \tau \Phi_x \colon Y \to VY \otimes \wedge^2 V^* Y$$

is called the torsion of vertical parallelism Φ .

For
$$\Psi = (\Gamma, \Lambda, \Phi, \Delta)$$
, (4), (6) and (12) imply directly

Proposition 4. The torsion $\tau \Psi$ of Ψ is restrictible to the fibers and the restricted map $Y \to VY \otimes \wedge^2 V^*Y$ concides with $\tau \Phi$.

By (12), the coordinate form of $\tau \Phi = 0$ is

(13)
$$\frac{\partial a_s^p}{\partial y^r} \tilde{a}_q^s = \frac{\partial a_s^p}{\partial y^q} \tilde{a}_r^s.$$

4. Vanishing of the torsion of $(\Gamma, \Lambda, \Phi, \Delta)$. We characterize vanishing of the torsion $\tau \Psi$ of Ψ gradually. We write Ψ^p_{ij} , Ψ^p_{iq} , Ψ^p_{qi} , Ψ^p_{qr} for the corresponding Christoffel's of Ψ .

First we recall the general concept of Lie derivative of an arbitrary map $f: M \to N$ with respect to a pair of vector fields $\xi: M \to TM$ and $\eta: N \to TN$, [5]. This is the map

$$\mathcal{L}_{(\xi,\eta)}f = Tf \circ \xi - \eta \circ f \colon M \to TN$$
.

If we consider a section $s: M \to Y$, its covariant differential $D_{\Gamma}s: M \to VY \otimes T^*M$ with respect to Γ satisfies

$$(D_{\Gamma}s)(\xi) = \mathcal{L}_{(\xi,\Gamma\xi)}s$$
 for every $\xi: M \to TM$,

[5]. If we have another fibered manifold $Z \to M$ with general connection Ω of the form $dz^a = G_i^a(x,z) dx^i$ and a base-preserving morphism $f: Y \to Z, z^a = f^a(x,y)$, then the covariant differential $D_{\Gamma,\Omega}f: Y \to VZ \otimes T^*M$ is defined by

$$(D_{\Gamma,\Omega}f)(\xi) = \mathcal{L}_{(\Gamma\xi,\Omega\xi)}f.$$

Hence its coordinate expression is

(14)
$$\frac{\partial f^a}{\partial x^i} + \frac{\partial f^a}{\partial y^p} F_i^p - G_i^a(x, f(x, y)).$$

Consider $\Phi: Y \times_M E \to VY$. According to [5, p.255], Γ induces a connection $\mathcal{V}\Gamma$ on $VY \to M$ with the coordinate expression (2) and

(15)
$$d\eta^p = \frac{\partial F_i^p}{\partial u^q} \eta^q dx^i.$$

Further, we construct the product connection $\Gamma \times \Delta$ on $Y \times_M E$. Then $D_{\Gamma \times \Delta, \mathcal{V}\Gamma} \Phi \colon Y \times_M E \to VVY$. The values lie in a subbundle characterized by $V\pi = 0$, where $\pi \colon VY \to Y$ is the bundle projection, so that $V\pi \colon VVY \to VY$. This subbundle coincides with $VY \times_Y VY$.

Definition 4. The covariant differential $D_{(\Gamma,\Delta)}\Phi: Y \times_M E \to VY$ is the second component of $D_{\Gamma \times \Delta, \nu_{\Gamma}}\Phi$.

According to (14) and (15), its coordinate expression is

(16)
$$\left(\frac{\partial a_q^p}{\partial x^i} + \frac{\partial a_q^p}{\partial y^r} F_i^r + a_r^p \Delta_{qi}^r - \frac{\partial F_i^p}{\partial y^r} a_q^r \right) w^q .$$

By (6), the condition $\Psi_{qi}^p = \Psi_{iq}^p$ reads

(17)
$$\frac{\partial a_r^p}{\partial x^i} \tilde{a}_q^r + a_r^p \Delta_{si}^r \tilde{a}_q^s = \frac{\partial F_i^p}{\partial v^q} - \frac{\partial a_s^p}{\partial v^q} \tilde{a}_r^s F_i^r.$$

Then (13) and (16) imply the following assertion.

Proposition 5. If $\tau \Phi = 0$, then $\Psi_{qi}^p = \Psi_{iq}^p$ is equivalent to $D_{(\Gamma,\Delta)}\Phi = 0$.

Further, if $\tau \Lambda = 0$ and $\tau \Phi = 0$ and $D_{(\Gamma, \Delta)} \Phi = 0$, where $\tau \Lambda$ is the torsion of Λ , then $\Psi_{ij}^p = \Psi_{ji}^p$ is equivalent to

(18)
$$\frac{\partial F_i^p}{\partial x^j} + \frac{\partial F_i^p}{\partial y^q} F_j^q = \frac{\partial F_j^p}{\partial x^i} + \frac{\partial F_j^p}{\partial y^q} F_i^q.$$

We recall that the curvature of Γ is a map $C\Gamma: Y \to VY \otimes \wedge^2 T^*M$ and (18) is the coordinate form of the relation $C\Gamma = 0$, [5]. Thus we have deduced the following assertion.

Proposition 6. The torsion of $(\Gamma, \Lambda, \Phi, \Delta)$ vanishes iff $\tau \Lambda = 0$ and $\tau \Phi = 0$ and $D_{(\Gamma, \Delta)} \Phi = 0$ and $C\Gamma = 0$.

References

- [1] L. Fatibene, M. Francaviglia, Natural and Gauge Natural Formalism for Classical Field Theories, Kluwer, 2003.
- [2] J. Gancarzewicz, Horizontal lifts of linear connections to the natural vector bundles, Research Notes in Math. 121, Pitman, 1985, 318–341.
- [3] J. Janyška, J. Vondra, Natural principal connections on the principal gauge prolongation of a principal bundle, to appear in Rep. Math. Phys.
- [4] I. Kolář, On the gauge version of exponential map, to appear in Rep. Math. Phys.
- [5] I. Kolář, P. W. Michor, J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, 1993.
- [6] S. Sternberg, Lectures on Differential Geometry, Prentice Hall, 1964.

Institute of Mathematics and Statistics Masaryk University Kotlářská 2, CZ 611 37 Brno Czech Republic *E-mail*: kolar@math.muni.cz